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Abstract. The undirected graph 𝐺𝑚,𝑛

𝑀 =  (𝑉, 𝐸) has the vertex set 𝑉 =  {1,2, 3, … , 𝑛} and 

𝑢, 𝑣 ∈ 𝑉 are adjacent if and only if 𝑢 ≠  𝑣 and 𝑢 ⋅  𝑣 is not divisible by 𝑚, where 𝑚, 𝑛 ∈  ℕ. 

The connectedness, the completeness, the diameter and the Eulerian property of 𝐺𝑚,𝑛
𝑀  are 

explored in this paper. The average degree, the top, the gap and the balanced conditions of 

𝐺𝑚,𝑛
𝑀  for various values of 𝑚 are also analysed. 
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1. Introduction 

 

Let 𝑚, 𝑛 ∈  ℕ, where ℕ denote the set of all natural numbers. In this paper, we 

define and study an undirected simple graph 𝐺𝑚,𝑛
𝑀 =  (𝑉, 𝐸) on a finite subset of 

natural numbers, where the vertex set 𝑉 =  {1, 2, … , 𝑛} and any two distinct vertices 

𝑢, 𝑣 ∈  𝑉 are adjacent if and only if 𝑚 ∤  𝑢 ⋅  𝑣. We study the connectedness, the 

completeness, the edge degree, the diameter and the Eulerian property of 𝐺𝑚,𝑛
𝑀 . We 

determine the values of 𝑚 such that the average degree of non regular graph 𝐺𝑚,𝑛
𝑀  is 

an integer. We also find the values of 𝑚 such that 𝐺𝑚,𝑛
𝑀  is balanced. One can refer 

[1, 3] for graphs defined and studied on finite subset of natural numbers. 

Throughout the paper for a vertex 𝑖 ∈  𝑉, we mean the label of the vertex 𝑣 = 𝑖 
and 𝑢𝑣 denote the usual multiplication 𝑢 ⋅  𝑣. For terminology and notations that are 

not defined here, we follow [7].  

 

2. Connectedness of 𝐺𝑚,𝑛
𝑀  

 

We begin with some simple observations. 

Observation 2.1.  Let 𝑚 = 1. Then 𝐺𝑚,𝑛
𝑀  is a null graph with 𝑛 vertices. 

 

Observation 2.2.  For 1 < 𝑚 ≤  𝑛, the graph 𝐺𝑚,𝑛
𝑀  is disconnected.  
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We now present a structural property of the 𝐺𝑚,𝑛
𝑀  graph. 

 

Theorem 2.1.  Let 1 < 𝑚 ≤  𝑛 and 𝑚 is a prime. Then 𝐺𝑚,𝑛
𝑀  is disjoint union of  

𝐾
n−⌊

𝑛

𝑚
⌋
 and ⌊𝑛

𝑚
⌋ copies of 𝐾1. 

 

Proof. Let 𝑚 be a prime, where 1 < 𝑚 ≤  𝑛. The number of multiples of 𝑚 up to 𝑛 

is ⌊𝑛

𝑚
⌋. The vertex set 𝑉 of 𝐺𝑚,𝑛

𝑀  can be written as the disjoint union of the sets 𝑉1 and 

𝑉2, where  

 𝑉1 = {𝑖 ∈  𝑉 ∶   𝑔𝑐𝑑(𝑖, 𝑚) = 1} and  𝑉2 =  { 𝑗 ∈  𝑉 ∶  𝑔𝑐𝑑(𝑗, 𝑚) = 𝑚 }.  Let  

𝑖1 ,  𝑖2 ∈  𝑉1,    then 𝑔𝑐𝑑(𝑖1, 𝑚) = 1 and 𝑔𝑐𝑑(𝑖2, 𝑚) = 1, which gives 𝑔𝑐𝑑(𝑖1  ⋅  𝑖2,
𝑚) = 1 ⇒  𝑚 ∤  𝑖1  ⋅   𝑖2, thus the vertices 𝑖1 , 𝑖2 are adjacent. Let  𝑖1 ∈   𝑉1,  𝑗1∈  𝑉2,  

then 𝑔𝑐𝑑(𝑖1, 𝑚) = 1,  𝑔𝑐𝑑(𝑗1, 𝑚) = 𝑚 ⇒ 𝑚| 𝑖1  ⋅   𝑗1 . So, the vertices 𝑖1,  𝑗1 are not 

adjacent. Hence the vertices in 𝑉1  are not adjacent to any vertex 𝑗 ∈   𝑉2 as 𝑚| 𝑖1  ⋅
 𝑗, 𝑖1  ∈ 𝑉1, 𝑗 ∈   𝑉2.  Again, the vertices in 𝑉1 form a clique of size 𝑛 − ⌊𝑛

𝑚
⌋. The 

vertices in 𝑉2 are not adjacent to each other as 𝑚|𝑗 ⋅  𝑘, 𝑗, 𝑘 ∈   𝑉2. And the cardinality 

of the set 𝑉2 is ⌊𝑛

𝑚
⌋. Thus the graph 𝐺𝑚,𝑛

𝑀  is disjoint union of 𝐾n−⌊ 𝑛
𝑚

⌋ and ⌊𝑛

𝑚
⌋ copies 

of 𝐾1. The graph shown in Figure 1 illustrates the disconnectedness and the 

components of 𝐺𝑚,𝑛
𝑀  for 𝑚 < 𝑛.  

 

 
 
Connectedness of 𝐺𝑚,𝑛

𝑀  is explained in the next theorem. 

 

Theorem 2.2.  Let 𝑚 > 𝑛. Then the graph 𝐺𝑚,𝑛
𝑀  is connected. 

 

Proof. Let 𝑚 > 𝑛 and the vertex set 𝑉 =  {1, 2, … , 𝑛}.  As 𝑚 > 𝑛 ⟹  𝑚 > 1 ⋅
 𝑛 ⟹  𝑚 >  1 ⋅  𝑗 for all 𝑗 ∈  {2, 3, … , 𝑛}, which gives 𝑚 ∤ 1 ⋅  𝑗 for all 𝑗 ∈
 {2, 3, … , 𝑛}.  Thus the vertex 𝑖 = 1 is adjacent to all other vertices in 𝐺𝑚,𝑛

𝑀 , which 

follows that 𝐺𝑚,𝑛
𝑀  is connected for 𝑚 > 𝑛.  
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3. Counting the Degree of a Vertex 

 
In this section, we explain how to count the degrees of vertices of 𝐺𝑚,𝑛

𝑀  for natural 

numbers 𝑚, 𝑛. Then we explain how to calculate the total number of distinct possible 

degrees in 𝐺𝑚,𝑛
𝑀  of order 𝑛 for various values of 𝑚.  

      We determine the degree of a vertex as follows: 

• If the 𝑔𝑐𝑑(𝑖, 𝑚) = 1, then the degree of the vertex 𝑖 is 𝑑𝑒𝑔(𝑖) = 𝑛 − 1. 

• If the 𝑔𝑐𝑑(𝑖, 𝑚) = 𝑖 > 1 and 𝑚 =  𝑖 ⋅  𝑗, where 𝑗 > 𝑛, then the degree of 

the vertex 𝑖 is 𝑛 − 1. 

• If the 𝑔𝑐𝑑(𝑖, 𝑚) = 𝑖 > 1 and 𝑚 = 𝑖 ⋅  𝑗,  where 𝑗 ≤  𝑛, such that 

𝑔𝑐𝑑(𝑖, 𝑗) = 1, then the degree of the vertex 𝑖 is 𝑛 − ⌊𝑛

𝑗
⌋ − 1. 

• If the 𝑔𝑐𝑑(𝑖, 𝑚) = 𝑖 > 1 and 𝑚 = 𝑖 ⋅  𝑗 (𝑖 ≠  𝑗, 𝑖, 𝑗 ≤  𝑛), where 𝑖|𝑗, then 

the degree of the vertex 𝑖 is 𝑑𝑒𝑔(𝑖) = 𝑛 − ⌊𝑛

𝑗
⌋  − 1 and the degree of the 

vertex 𝑗 is 𝑑𝑒𝑔(𝑗) = 𝑛 − ⌊𝑛

𝑖
⌋. 

• If the 𝑔𝑐𝑑(𝑖, 𝑚) = 𝑖 > 1 and 𝑚 = 𝑖 ⋅  𝑖, then the degree of the vertex 𝑖 is 

𝑑𝑒𝑔(𝑖) = 𝑛 − ⌊𝑛

𝑖
⌋. 

• If 𝑔𝑐𝑑(𝑖, 𝑚) = 𝑗 > 1 and 𝑚 = 𝑗 ⋅  𝑘, then the degree of the vertex 𝑖 is 𝑛 −
⌊𝑛

𝑘
⌋ − 1. 

 

Lemma 3.1. Let 𝑖, 𝑗 ∈  𝑉. Then the degrees of the vertices 𝑖, 𝑗 are equal if 

𝑔𝑐𝑑(𝑖, 𝑚) = 𝑔𝑐𝑑(𝑗, 𝑚). 

 

Proof. Let 𝑔𝑐𝑑(𝑖, 𝑚) = 𝑔𝑐𝑑(𝑗, 𝑚) =  𝑖1, 𝑖, 𝑗 ∈  𝑉, 𝑖1  ∈  ℕ . Then degrees of the 

vertices 𝑖, 𝑗 are same as 𝑚 =  𝑖1  ⋅  
𝑚

𝑖1
, then the degree of the vertices 𝑖, 𝑗 is  

𝑛 − ⌊
𝑛
𝑚
𝑖1

⌋  − 1. 

For a given value of 𝑚, the various possible degrees of 𝐺𝑚,𝑛
𝑀  of order 𝑛 is explained. 

We find the pair of factors {𝑖𝑡 ,  𝑗𝑡}, for 𝑖, 𝑗 =  1, 2, . . . , 𝑡 of 𝑚 such that 
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                               𝑚 =  𝑖1  ⋅  𝑗1 = 𝑖2  ⋅  𝑗2 =  …  = 𝑖𝑡  ⋅ 𝑗𝑡        
and each of these factors of 𝑚, that is,  𝑖1, 𝑖2, … ,  𝑖𝑡 ,  𝑗1, 𝑗2, … , 𝑗𝑡  are less than or equal 

to 𝑛. Then the possible degrees of 𝐺𝑚,𝑛 
𝑀 are 𝒜 = {𝑛 − 1, 𝑛 − ⌊

𝑛

𝑗1
 ⌋ − 1 or  𝑛 −

⌊
𝑛

𝑗1
⌋ , 𝑛 − ⌊

𝑛

𝑖1
⌋ − 1 or  𝑛 − ⌊

𝑛

𝑖1
⌋ , … , 𝑛 − ⌊

𝑛

𝑗𝑡
⌋ − 1 or  𝑛 − ⌊

𝑛

𝑗𝑡
⌋ , 𝑛 − ⌊

𝑛

𝑖𝑡
⌋ − 1 or   𝑛 −

⌊
𝑛

𝑖𝑡
⌋}. The cardinality of the set 𝒜 gives the number of distinct possible degrees of 

𝐺𝑚,𝑛
𝑀 . 

      It is natural to count the minimum number of vertices of degree 𝑛 − 1. In fact, 

the number of vertices of degree 𝑛 − 1 allow us to know the minimum number of 

integers in {1, 2, … , 𝑛} that are co-prime to 𝑚. Let us assume that  𝑝1, 𝑝2, … , 𝑝𝑘 

be the 𝑘 distinct primes present in the prime factorization of 𝑚, that is, 𝑚 =
 𝑝1

𝑛1𝑝2
𝑛2 … 𝑝𝑘

𝑛𝑘  and ℬ be the number of the vertices in 𝑉 whose labels are 

relatively prime to 𝑚. Let 𝑃𝑙 be the property that an integer is divisible by prime 𝑝𝑙, 

for 𝑙 = 1, 2, … , 𝑘.  Let 𝐴_𝑙 =  {𝑥: 𝑥 ∈  𝑉 and 𝑥 has property  𝑃_𝑙}. Then 𝐴𝑙 ∩ 𝐴𝑗 is a 

subset of 𝑉 that have both property 𝑃𝑙 and 𝑃𝑗. Similarly,  𝐴𝑙 ∩ 𝐴𝑗 ∩ 𝐴𝑜 is a subset of 

𝑉 that have the property 𝑃𝑙, 𝑃𝑗 and 𝑃𝑜 and so on. Thus by using inclusion-exclusion 

principle, we have ℬ = 𝑛 − ∑|𝐴𝑖| + ∑|𝐴𝑙 ∩ 𝐴𝑗| − ∑|𝐴𝑙 ∩ 𝐴𝑗  ∩ 𝐴𝑜| + ⋯ +

(−1)𝑘|𝐴1 ∩  𝐴2 ∩ … ∩  𝐴𝑘|, where the first sum is over all 1-combinations 𝑗 of 

{1,2, … , 𝑘}, the second sum is over all 2-combinations {𝑙, 𝑗} of {1,2, … , 𝑘} and so 

on.  

Example 3.1. Let 𝑛 = 21 and 𝑚 = 36 = 2 ⋅  18 = 3 ⋅  12 = 4 ⋅  9 = 6 ⋅  6. Then 

the possible degrees of 𝐺𝑚,𝑛 
𝑀 are 𝒜 = {𝑛 − 1, 𝑛 − ⌊ 𝑛

18
⌋ − 1, 𝑛 − ⌊𝑛

2
⌋, 𝑛 − ⌊ 𝑛

12
⌋ − 1, 𝑛 −

⌊𝑛

3
⌋, 𝑛 − ⌊𝑛

9
⌋ − 1, 𝑛 − ⌊𝑛

4
⌋ − 1, 𝑛 − ⌊𝑛

6
⌋} = {𝑛 − 1, 𝑛 − 2, 𝑛 − 10, 𝑛 − 2, 𝑛 − 7, 𝑛 −

3, 𝑛 − 6, 𝑛 − 6} = {𝑛 − 1, 𝑛 − 2, 𝑛 − 3, 𝑛 − 6, 𝑛 − 7, 𝑛 − 10}. Thus, the distinct 

possible degrees of 𝐺36,21
𝑀  is the cardinality of 𝒜, which is 6. Again, the number of 

vertices in 𝑉 whose labels are co-prime to 𝑚 is ℬ = 𝑛 − (⌊𝑛

2
⌋ + ⌊𝑛

3
⌋)  +  ⌊ 𝑛

6
⌋ = 7.  

Now we find the degree of the vertices. As 𝑔𝑐𝑑(1,36)  = 𝑔𝑐𝑑(5,36) =
𝑔𝑐𝑑(7,36) = 𝑔𝑐𝑑(11,36) = 𝑔𝑐𝑑(13,36) = 𝑔𝑐𝑑(17,36) = 𝑔𝑐𝑑(19,36) = 1, the 

degree of the vertices {1, 5, 7, 11, 13, 17, 19} are 𝑛 − 1 = 20. Again 𝑔𝑐𝑑(2, 36) =
𝑔𝑐𝑑(10,36) = 𝑔𝑐𝑑(14,36) = 2, thus the degree of the vertices {2, 10, 14} are 

equal. The degree of the vertex labeled as 2 is 𝑑𝑒𝑔(2) = 𝑛 − ⌊ 𝑛

18
⌋ − 1 = 𝑛 − 2 =

19. The degree of the vertex 𝑣 = 3 is 𝑑𝑒𝑔(3) = 𝑛 − ⌊ 𝑛

12
⌋ − 1 = 𝑛 − 2 = 19. As 

𝑔𝑐𝑑(3,36) = 𝑔𝑐𝑑(15, 36) = 𝑔𝑐𝑑(21,36) = 3, so the degree of the vertices 15, 21 

are 𝑛 − 2 = 19. Similarly, it can be seen that the degrees of the vertices 4, 8, 16, 20 

are 𝑛 − 3 = 18. The degree of the vertex 𝑢 = 6 is 𝑑𝑒𝑔(6) =  𝑛 − ⌊𝑛

6
⌋ = 𝑛 − 3 =

18. The vertex 𝑣 = 9 is of degree 𝑛 − ⌊𝑛

4
⌋ − 1 = 15. The degree of the vertex 𝑣 =

12 is 𝑑𝑒𝑔(12) = 𝑛 − ⌊𝑛

3
⌋ = 𝑛 − 7 = 14 and the degree of the vertex 𝑣 = 18 is 

𝑑𝑒𝑔(18) = 𝑛 − ⌊𝑛

2
⌋ = 𝑛 − 10 = 11. Hence the various possible degrees of the 

vertices are 20, 19, 18, 15, 14, 11. 
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It is known that the number of divisors of 𝑥 is denoted by 𝜎0(𝑥). 

Let 𝐷 be the number of distinct possible degrees of 𝐺𝑚,𝑛
𝑀 . We study the relation 

between 𝐷 and 𝜎0(𝑚). 

For 1 < 𝑚 ≤  𝑛, let us define a binary relation 𝜌 on 𝑉 as follows: 

For 𝑎, 𝑏 ∈  𝑉, 𝑎𝜌 𝑏 ⟺  𝑔𝑐𝑑(𝑎, 𝑚) = 𝑔𝑐𝑑(𝑏, 𝑚).  

Clearly 𝜌 is an equivalence relation on 𝑉. Thus 𝜌 partition the vertex set 𝑉 into 

equivalence classes. And the number of equivalence classes is equal to the number 

of distinct factors of 𝑚 that are less than or equal to 𝑛.  

 

Theorem 3.2.  For 1 < 𝑚 ≤  𝑛,  𝐷 = 𝜎0(𝑚). 

 

Proof. Let 1 < 𝑚 ≤  𝑛 and  𝑓1, 𝑓2,…, 𝑓𝑡 are the factors of 𝑚, then clearly the factors 

of 𝑚 are also less than or equal to 𝑛. It is clear that for any vertex 𝑢 ∈  𝑉, 

𝑔𝑐𝑑(𝑢, 𝑚) =  𝑓𝑖, where 𝑓𝑖, 

 is a factor of 𝑚, for 𝑖 = 1,2, … , 𝑡. Thus, the vertex set 𝑉 can be partitioned into 𝑡 

disjoint subsets such as  𝑉1, 𝑉2, … , 𝑉𝑡,  where 𝑡 = 𝜎0(𝑚) and each subset contain 

vertices of 𝑉 which have the same gcd with 𝑚. 

We claim that the number of distinct possible degrees 𝐷 is equal to 𝜎0(𝑚). Let, if 

possible, 𝐷 > 𝜎0(𝑚). Then there will a vertex 𝑤 ∈  𝑉 such that 𝑔𝑐𝑑(𝑤, 𝑚) = 𝑚1, 

 where 𝑚1 is not a factor of 𝑚, which is absurd. Again, consider the case that 𝐷 <
𝜎0(𝑚).  

Then there will be at least two partitions of the subsets of V such that all the vertices 

in both the partition bear the same degree of the vertices. Let the two partitions of 𝑉 

be 𝑉𝑖 and 𝑉𝑗  where 𝑔𝑐𝑑(𝑣𝑖, 𝑚) =  𝑓𝑖  and   𝑔𝑐𝑑(𝑢𝑗, 𝑚) =  𝑓𝑗, for 𝑣𝑖 ∈  𝑉𝑖, 𝑢𝑗 ∈  𝑉𝑗 

and 𝑓𝑖, 𝑓𝑗 are factors of 𝑚. Then 
𝑛

𝑚𝑖
=

𝑛

𝑚𝑗
, where 𝑚 = 𝑓𝑖 ⋅  𝑚𝑖 = 𝑓𝑗 ⋅  𝑚𝑗, which is 

not possible as 𝑓𝑖 ≠  𝑓𝑗 and  𝑓𝑖, 𝑓𝑗, 𝑚𝑖, 𝑚𝑗 ≤ 𝑛.    

Thus 𝐷 = 𝜎0(𝑚). 
 

Example 3.2. Consider 𝐺𝑚,𝑛
𝑀  where 𝑚 = 8 and 𝑛 = 10. Then the number of factors 

of 𝑚 is 𝜎0(𝑚) = 1 + 20 + 40 + 80 = 4. The vertices 1, 3, 5, 7 are co-prime to 𝑚 =
8, so 𝑑𝑒𝑔(1) = 𝑑𝑒𝑔(3) = 𝑑𝑒𝑔(5) = 𝑑𝑒𝑔(7) = 𝑛 − 1 = 9.  Again, the vertices 

2, 6, 10 are not adjacent to the vertices 4, 8 implying 𝑑𝑒𝑔(2)  =  𝑑𝑒𝑔(6) =
 𝑑𝑒𝑔(10) = 𝑛 − 3 = 7. The vertex 4 is not adjacent to the vertices 2, 6, 8, 10, so 

𝑑𝑒𝑔(4) = 5 and clearly the vertex 8 is of degree 0. Thus  𝐺8,10
𝑀  is a disconnected 

graph with 𝜎0(8) = 4 distinct degrees such as 9, 7, 5, 0. 

 
4. The Structure of 𝐺𝑚,𝑛

𝑀  for Various Values of 𝑚 > 𝑛 

 
For a given value of 𝑛, if 𝑚 > 𝑛, 𝐺𝑚,𝑛

𝑀  is connected by Theorem 2.2.  In this section 

we consider the structure of 𝐺𝑚,𝑛
𝑀  graphs where 𝑚 > 𝑛. It is easy to see that 𝐺𝑚,𝑛

𝑀  is 
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complete for 𝑚 >  𝑛(𝑛 − 1) as 𝑚 >  𝑛(𝑛 − 1) ⟹ 𝑚 >  𝑖 ⋅  𝑗, which gives 𝑚 ∤ 𝑖 ⋅  𝑗 

for all 𝑖, 𝑗 ∈  𝑉. 

We study the graph 𝐺𝑚,𝑛
𝑀 , where 𝑚 takes the value as mentioned below.  

• a prime, 

• a multiple of a prime, 

• a square of a prime ⌊𝑛

2
⌋ < 𝑝 ≤  𝑛, 

• a square of a prime 1 < 𝑝 ≤  ⌊𝑛

2
⌋, 

• product of 𝑖, 𝑗 ∈  𝑉 such that both 𝑖, 𝑗 ≤  ⌊𝑛

2
⌋, 

• product of 𝑖, 𝑗 ∈  𝑉 such that both  ⌊𝑛

2
⌋ < 𝑖, 𝑗 ≤  𝑛,  

• product of 𝑖, 𝑗 ∈  𝑉 such that 𝑖 < ⌊𝑛

2
⌋ and 𝑗 > ⌊𝑛

2
⌋. 

 

Theorem 4.1. Let 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1). The graph 𝐺𝑚,𝑛
𝑀  is complete if 

  (i)  𝑚 is a prime; 

  (ii) 𝑚 is a multiple of a prime 𝑝 > 𝑛; 

  (iii) 
𝑚

𝑖
> 𝑛, for 𝑖 ≤  𝑛 is a factor of 𝑚; 

  (iv) 𝑚 =  𝑝2, where 𝑝 is a prime and ⌊𝑛

2
⌋ < 𝑝 ≤  𝑛. 

 

Proof. (i) Let 𝑚 be a prime. Then, for all 𝑖, 𝑗 ∈  𝑉 𝑚 ∤ 𝑖 ⋅  𝑗, which implies 

                              𝑑𝑒𝑔(𝑖) = 𝑑𝑒𝑔(𝑗) = 𝑛 − 1. Thus, the graph 𝐺𝑚,𝑛
𝑀  is complete. 

(ii) Let 𝑚 = 𝑚1 ⋅  𝑝, where 𝑚1 ∈ ℕ and 𝑝 > 𝑛 be a prime. Then 𝑝 ∤ 𝑖 ⋅  𝑗 ⟹ 𝑚 ∤  𝑖 ⋅
 𝑗 for all 𝑖, 𝑗 ∈  𝑉, which implies 𝐺𝑚,𝑛 

𝑀 is complete. 

(iii) Let 𝑖 < 𝑛 be a factor of 𝑚 and 
𝑚

𝑖
> 𝑛, then clearly ⌊𝑛

𝑚
𝑖

⁄ ⌋ = 0, which implies 

𝑑𝑒𝑔(𝑖) = 𝑛 − 1.  Again, if 𝑗 ∈  𝑉 such that 𝑗 is not a factor of 𝑚, then 𝑔𝑐𝑑(𝑗, 𝑚) =
1 which gives the degree of the vertex 𝑗 is 𝑛 − 1. Hence 𝐺𝑚,𝑛

𝑀  is complete. 

(iv) Let 𝑚 = 𝑝2, where 𝑝 is a prime and ⌊
𝑛

2
⌋ < 𝑝 ≤  𝑛, then the 𝑔𝑐𝑑(𝑖, 𝑚) = 1 for 

all 𝑖(≠  𝑝) ∈  𝑉 implying 𝑑𝑒𝑔(𝑖) = 𝑛 − 1 for all 𝑖 ∈  𝑉. It is clear that ⌊𝑛

𝑝
⌋ = 1, 

which implies the degree of the vertex 𝑝 ∈  𝑉 is 𝑑𝑒𝑔(𝑝) = 𝑛 − 1. 

 

Theorem 4.2. The maximum degree of the graph 𝐺𝑚,𝑛
𝑀  is 𝑛 − 1. 

 

Proof. Clearly, 𝑛 − 1 is the highest possible degree of the graph 𝐺𝑚,𝑛
𝑀 with 𝑛 vertices. 

The vertex 𝑖 = 1 ∈  𝑉 is of degree 𝑛 − 1 as 𝑚 ∤ 1 ⋅  𝑗 for all 𝑗 ∈  𝑉.  

 

Lemma 4.3.  Let 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1) and 𝑚 = 2 ⋅  𝑝, where 𝑝 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛} is 

a prime. Then (n-1)/2 vertices are of degree 𝑛 − 1,   (𝑛 − 1)/2 vertices are of degree 

𝑛 − 2 and one vertex is of degree (𝑛 − 1) 2⁄ , if 𝑛 is odd; and (𝑛 − 2) 2⁄   vertices 

are of degree 𝑛 − 1,   𝑛 ⁄ 2 vertices are of degree 𝑛 − 2 and one vertex is of degree 

(𝑛 − 2) 2⁄ , if 𝑛 is even. 
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Proof. Let 𝑚 = 2 ⋅  𝑝, where 𝑝 ∈ {⌊𝑛

2
⌋ + 1, … , 𝑛} is a prime, then 𝑚 divides only the 

even multiples of 𝑝. Thus, any vertex 𝑗 ∈  𝑉 labeled as odd integer (except the vertex 

𝑝) is adjacent to all the vertices as 𝑚 ∤ 𝑗 ⋅  𝑘, for all 𝑘(≠  𝑗) ∈  𝑉 which gives the 

degree of the vertex 𝑗 is 𝑛 − 1. The vertices labeled as even integers are of degree 

𝑛 − 2 as they are not adjacent to the vertex 𝑝 (as 𝑚|𝑤 ⋅  𝑝, where the label of the 

vertex 𝑤 is even) and itself. The vertex 𝑝 is adjacent to the vertices labeled as odd 

integers (except itself) as 2𝑝 ∤ 𝑗 ⋅  𝑝, where 𝑗 ∈  𝑉 is an odd integer. The following 

two possibilities may arise: 

Case I. Let 𝑛 be odd, then ⌈
𝑛

2
⌉ =

𝑛+1 

2
  vertices are labeled as odd integers and ⌊𝑛

2
⌋ =

𝑛−1

2
 vertices are labeled as even integers. Hence 

𝑛+1

2
− 1 =  (𝑛 − 1) 2⁄  vertices are 

of degree 𝑛 − 1, (𝑛 − 1)/2 vertices are of degree 𝑛 − 2. The vertex 𝑤 = 𝑝 is of 

degree 
𝑛+1

2
− 1 =

(𝑛−1)

2
. 

Case II. Let 𝑛 be even, then 𝑛 2⁄  vertices are labeled as odd integers and 𝑛 2⁄   vertices 

are labeled as even integers. Thus  𝑛 ⁄ 2 − 1 = (𝑛 − 2) ⁄ 2  vertices are of degree 

𝑛 − 1, 𝑛 2⁄   vertices are of degree 𝑛 − 2 and the vertex 𝑤 = 𝑝 is of degree 𝑛 2⁄  −
1 = (𝑛 − 2) 2⁄  . 
 

Lemma 4.4. Let 𝑚 = 𝑝2 > 𝑛, where 𝑝 ≤  ⌊𝑛

2
⌋, then 𝐺𝑚,𝑛

𝑀  contain 𝑛 − ⌊𝑛

𝑝
⌋ vertices of 

degree 𝑛 − 1 and ⌊𝑛

𝑝
⌋ vertices of degree 𝑛 − ⌊𝑛

𝑝
⌋. 

 

Proof. Let 𝑚 = 𝑝2, where 𝑝 is a prime and 𝑝 ≤  ⌊𝑛

2
⌋. The vertex 𝑢 ∈  𝑉 is of degree 

𝑛 − 1 if the label of 𝑢 is not multiple of 𝑝. The number of multiple of 𝑝 up to 𝑛 is 

⌊𝑛

𝑝
⌋. Thus 𝑛 − ⌊𝑛

𝑝
⌋ vertices are of degree 𝑛 − 1. Again, let 𝑤 ∈  𝑉, such that the label 

of 𝑤 is multiple of 𝑝, then 𝑑𝑒𝑔(𝑤) = 𝑛 − ⌊𝑛

𝑝
⌋ as 𝑤 is not adjacent to the vertices 

whose labels are multiples of 𝑝. Thus ⌊𝑛

𝑝
⌋ vertices are of degree 𝑛 − ⌊𝑛

𝑝
⌋.  

It is known that a split graph is a simple graph in which the vertices can be partitioned 

into a disjoint union of clique and an independent set [4, 5]. 

 

Theorem 4.5. For 𝑚 = 𝑝2 > 𝑛, where 𝑝 ≤  ⌊
𝑛

2
⌋,  𝐺𝑚,𝑛

𝑀  is a split graph.  

Proof. Let 𝑚 = 𝑝2 > 𝑛, where 𝑝 ≤  ⌊
𝑛

2
⌋. By Lemma 4.4, the vertex set 𝑉 of 𝐺𝑚,𝑛

𝑀  can 

be partitioned into two disjoint subsets 𝑉1, 𝑉2 of 𝑉 such that 𝑉1 consist of the vertices 

of degree 𝑛 − 1 and 𝑉2 consist of the vertices of degree  𝑛 − ⌊
𝑛

𝑝
⌋. Again, the vertices 

in 𝑉1 form a clique of size 𝑛 − ⌊
𝑛

𝑝
⌋ and, on the other hand the vertices of 𝑉2 form 

independent set of size ⌊
𝑛

𝑝
⌋. Hence 𝐺𝑚,𝑛

𝑀  is a split graph.  
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Lemma 4.6. For 𝑚 = 𝑖 ⋅  𝑗 and 𝑖, 𝑗 are the unique factors of 𝑚 such that  𝑖, 𝑗 ∈

{⌊
𝑛

2
⌋ + 1, ⌊

𝑛

2
⌋ + 2, … , 𝑛} ⊆  𝑉, then the possible degrees of the vertices in 𝐺𝑚,𝑛

𝑀  are 

{𝑛 − 1, 𝑛 − 2}.  

 

Proof. Let 𝑚 = 𝑖 ⋅  𝑗 such that 𝑖, 𝑗 are the only factors of 𝑚, where ⌊
𝑛

2
⌋ + 1 ≤

 𝑖, 𝑗 ≤  𝑛. Then the degree of the vertex 𝑖 is 𝑑𝑒𝑔(𝑖) = 𝑛 − ⌊
𝑛

𝑗
⌋ − 1 and the degree of 

the vertex 𝑗 is 𝑑𝑒𝑔(𝑗) = 𝑛 − ⌊
𝑛

𝑖
⌋ − 1. As ⌊

𝑛

2
⌋ + 1 ≤  𝑖, 𝑗 ≤  𝑛, so ⌊

𝑛

𝑖
⌋ = ⌊

𝑛

𝑗
⌋ = 1. 

Thus 𝑑𝑒𝑔(𝑖) = 𝑑𝑒𝑔(𝑗) = 𝑛 − 2. 

To find the degree of a vertex 𝑢 ∈  𝑉 where 𝑢 ≠  𝑖, 𝑗, we may consider the 

following cases: 

Case I. Let 𝑢, 𝑣 ∈ {1,2, . . , ⌊
𝑛

𝑖
⌋} ⊆  𝑉, then 𝑢 ⋅  𝑣 <  𝑖 ⋅  𝑗 = 𝑚, which implies 𝑚 ∤

𝑢 ⋅  𝑣. Thus, the vertices 𝑢, 𝑣 are adjacent. 

Case II. Let 𝑢, 𝑣 ∈  𝑉 such that 𝑢 ∈ {1, 2, … , ⌊
𝑛

𝑖
⌋ }, 𝑣 ∈ {⌊

𝑛

𝑖
⌋ + 1, … , 𝑛}. Then 𝑢 ⋅

 𝑣 <  𝑖 ⋅  𝑗 = 𝑚, thus 𝑚 ∤ 𝑢 ⋅  𝑣, hence the vertices 𝑢, 𝑣 are adjacent. 

Case III. Let 𝑢, 𝑣 ∈  {⌊
𝑛

𝑖
⌋ + 1, … , 𝑛}. As 𝑢 ≠  𝑖, 𝑗  and 𝑖, 𝑗 are the unique factors of 

𝑚, so 𝑢 ⋅  𝑣 ≠  𝑖 ⋅  𝑗 for all 𝑣, which implies 𝑚 ∤ 𝑢 ⋅  𝑣, thus 𝑢, 𝑣 are adjacent.  

Hence from all the three cases it follows that for 𝑢 ≠  𝑖, 𝑗, the degree of the vertex 

𝑢 is 𝑛 − 1. So, the possible degrees of the vertices are {𝑛 − 1, 𝑛 − 2}.  

 

Theorem 4.7. For 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 are the unique factors of 𝑚 such that 𝑖, 𝑗 ∈

{⌊
𝑛

2
⌋ + 1, ⌊

𝑛

2
⌋ + 2, … , 𝑛} ⊆  𝑉, then 𝐺𝑚,𝑛

𝑀 is a split graph. 

 

Proof. Let 𝑖, 𝑗 are the unique factors of 𝑚 such that 𝑚 = 𝑖 ⋅  𝑗,  𝑖, 𝑗 ∈ {⌊𝑛

2
⌋ + 1, ⌊ 𝑛

2
⌋ +

2, … , 𝑛} ⊆  𝑉. By Lemma 4.6, the vertices 𝑖, 𝑗 are of degree 𝑛 − 2 and all other 

vertices are of degree 𝑛 − 1. Moreover, the vertices 𝑖, 𝑗 are independent and the 

vertices in 𝑉1 = 𝑉 ∖ {𝑖, 𝑗} are of degree 𝑛 − 1 forming a clique of size 𝑛 − 2. Thus, 

the vertex set 𝑉 = 𝑉1 ∪ {𝑖, 𝑗}, where 𝑉1 is a clique and {𝑖, 𝑗} is an independent set. 

Thus 𝐺𝑚,𝑛
𝑀  is a class of split graph. 

 

Let Γ= (𝑉Γ, 𝐸Γ) be a graph. In [6], R. Gera et al. defined the edge degree of an edge 

{𝑎, 𝑏} ∈  𝐸𝛤 as follows: 

               𝑑𝑒𝑔({𝑎, 𝑏}) = 𝑑𝑒𝑔(𝑎) + 𝑑𝑒𝑔(𝑏) −  2. 

In this section the next few results are about the possible edge degrees and the sum 

of edge degree sequence of 𝐺𝑚,𝑛
𝑀  for various values of 𝑚. 

 

Theorem 4.8. For the unique factors 𝑖, 𝑗 of 𝑚 such that 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 ∈ {⌊𝑛

2
⌋ +

1, ⌊ 𝑛

2
⌋ + 2, … , 𝑛} ⊆  𝑉, the possible edge degrees are 2𝑛 − 4, 2𝑛 − 6, 2𝑛 − 5 and the 

sum of edge degree sequence is 𝑛3 − 7𝑛2 +  50𝑛 −  98.  
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Proof. Let 𝑖, 𝑗 are the unique factors of 𝑚 such that 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 ∈ {⌊𝑛

2
⌋ +

1, ⌊ 𝑛

2
⌋ + 2, … , 𝑛}. Then by Lemma 4.6, 𝐺𝑚,𝑛

𝑀  contain 𝑛 − 2 vertices of degree 𝑛 −

1 and 2 vertices of degree 𝑛 − 2. Thus, the degree of an edge {𝑎1, 𝑏1}, where the 

vertices 𝑎1, 𝑏1 both are of degree 𝑛 − 1, is 𝑛 − 1 + 𝑛 − 1 − 2 = 2𝑛 − 4. Similarly, 

we find the degree of an edge {𝑎2, 𝑏2} is 2𝑛 − 6 if both the vertices 𝑎2, 𝑏2 are of 

degree 𝑛 − 2 and the degree of an edge {𝑎3, 𝑏3} is 2𝑛 − 5 if the vertices 𝑎3, 𝑏3 are 

of degree 𝑛 − 1 and 𝑛 − 2 respectively.  

The sum of edge degree sequence is given by 

∑ 𝑑𝑒𝑔({𝑎, 𝑏})∀{𝑎,𝑏}∈ 𝐸 = {(𝑛 − 2) + (𝑛 − 2) − 2} + (𝑛−2
2

){𝑛 − 1 + 𝑛 − 1 − 2} +

2(𝑛 − 2){𝑛 − 1 + 𝑛 − 2 − 2} = 𝑛3 − 7𝑛2 + 50𝑛 − 98. 

 

Theorem 4.9. For 𝑚 = 𝑝2 > 𝑛, where 𝑝 ≤  ⌊𝑛

2
⌋, the possible edge degrees are 2𝑛 −

4, 2(𝑛 − ⌊𝑛

𝑝
⌋ − 1), 2𝑛 − ⌊𝑛

𝑝
⌋ − 3 and sum of edge degree sequence is 𝑛3 + (𝑛 −

1)(⌊ 𝑛

𝑝
⌋ − (⌊𝑛

𝑝
⌋)

2
) − 𝑛(3𝑛 − 2). 

 

Proof. Let 𝑚 = 𝑝2 > 𝑛, where 𝑝 ≤  ⌊𝑛

2
⌋, then Lemma 4.4 asserts that there are 

⌊𝑛

𝑝
⌋ vertices of degree 𝑛 − ⌊𝑛

𝑝
⌋ and 𝑛 − ⌊𝑛

𝑝
⌋ vertices of degree 𝑛 − 1. Thus, the possible 

edge degrees of 𝐺𝑚,𝑛
𝑀  are 2𝑛 − 4, 2(𝑛 − ⌊𝑛

𝑝
⌋ − 1), 2𝑛 − ⌊𝑛

𝑝
⌋ − 3. And the sum of the 

edge degree of 𝐺𝑚,𝑛
𝑀  is given by  

∑ 𝑑𝑒𝑔({𝑎, 𝑏})
∀{𝑎,𝑏}∈ 𝐸

= (
𝑛 − ⌊𝑛

𝑝⌋

2
) (𝑛 − 1 + 𝑛 − 1 − 2)

+ (
⌊𝑛

𝑝⌋

2
) (𝑛 − ⌊

𝑛

𝑝
⌋ + 𝑛 − ⌊

𝑛

𝑝
⌋ − 2) +    ⌊ 

𝑛

𝑝
⌋(𝑛 − ⌊

𝑛

𝑝
⌋)(𝑛 − 1 + 𝑛

− ⌊
𝑛

𝑝
⌋ − 2) = 𝑛3 + (𝑛 − 1)(⌊ 

𝑛

𝑝
⌋ − (⌊

𝑛

𝑝
⌋)2) − 𝑛(3𝑛 − 2). 

 

 

Theorem 4.10. For 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1) and 𝑚 = 2 ⋅  𝑝, where 𝑝 ∈  {⌊𝑛

2
⌋  + 1, … , 𝑛} 

is a prime, the sum of edge degree sequence is 𝑛(𝑛 − 1)(𝑛 − 2) − ⌊ 𝑛

2
⌋(𝑛 − 1)(2𝑛 −

3) + (⌊ 𝑛

2
⌋)

2
(2𝑛 − 5). 

 

Proof. Let 𝑚 = 2 ⋅  𝑝, where 𝑝 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛} is a prime. Applying Lemma 4.3, 

we find the edge degrees by considering two cases. 

Case I. Let 𝑛 be odd then edge degrees of 𝐺𝑚,𝑛
𝑀  are 2𝑛 − 4, 2𝑛 − 6, 

3𝑛−7

2
,

3𝑛−9

2
. And 

the sum of edge degree sequence of 𝐺𝑚,𝑛
𝑀  is given by ∑ {𝑎, 𝑏}∀{𝑎,𝑏}∈ 𝐸 = (

𝑛−1

2
2

) (𝑛 −
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1 + 𝑛 − 1 − 2) + (
𝑛−1

2
2

) (𝑛 − 2 + 𝑛 − 2 − 2) + (
𝑛−1

2
)(𝑛 − 1 +

𝑛−1

2
− 2) +

𝑛−1

2
(𝑛 − 2 +

𝑛−1

2
− 2) =

1

4
(𝑛 − 1)(2𝑛2 − 5𝑛 − 1). 

Case II. Let 𝑛 be even then edge degrees of 𝐺𝑚,𝑛
𝑀  are 2𝑛 − 4, 2𝑛 − 6,  

3𝑛−8

2
,  

3𝑛−10

2
. 

And the sum of edge degree sequence of 𝐺𝑚,𝑛
𝑀  is given by ∑ {𝑎, 𝑏}∀{𝑎,𝑏}∈ 𝐸 =

(
𝑛−2

2
2

) (𝑛 − 1 + 𝑛 − 1 − 2) + (
𝑛

2
2
) (𝑛 − 2 + 𝑛 − 2 − 2) + (

𝑛−2

2
}(𝑛 − 1 +

𝑛−1

2
−

2) +  
𝑛

2
(𝑛 − 2 +  

𝑛−2

2
− 2) =

1

4
[2𝑛3 − 7𝑛2 + 2𝑛]. 

 

Theorem 4.11. The diameter of 𝐺𝑚,𝑛
𝑀  is 1, 2 or ∞. 

 

Proof. To find the diameter of 𝐺𝑚,𝑛
𝑀  we consider the following cases.  

Case I. Let 𝑚 < 𝑛. Then the graph 𝐺𝑚,𝑛
𝑀  is disconnected. So, the diameter of 𝐺𝑚,𝑛

𝑀  is 

∞. 
Case II. Let 𝑚 > 𝑛(𝑛 − 1), then the graph 𝐺𝑚,𝑛

𝑀  is complete so the diameter of the 

graph is 1. 

Case III. Let 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1) and 𝑖, 𝑗, 𝑘 are distinct vertices in 𝑉. The vertex 

𝑖 = 1 is adjacent to all other vertices 𝑘 ∈  𝑉 as 𝑚 ∤ 1 ⋅  𝑘. Let the vertices 𝑗, 𝑠 are not 

adjacent. Then the vertices 𝑗, 𝑠 are connected via the vertex 𝑖 = 1 as 𝑗 is adjacent to 

1 and 1 is adjacent to 𝑠. Thus, the diameter of 𝐺𝑚,𝑛
𝑀  is 2.  

 

5. Eulerian Property of 𝐺𝑚,𝑛
𝑀  

 

Theorem. 5.1. Let 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1). The graph 𝐺𝑚,𝑛
𝑀  is not Eulerian if 𝑛 is even. 

 

Proof. Let 𝑛 be even and 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1). Then the degree of the vertex 𝑖 = 1 is 

𝑛 − 1 by Theorem 2.2, which is odd, thus 𝐺𝑚,𝑛
𝑀  is not Eulerian.   

 

According to Theorem 5.1, 𝐺𝑚,𝑛
𝑀  is not Eulerian for even integer 𝑛, so in the 

next results in           this section we consider 𝑛 as an odd integer to check whether 

the graph 𝐺𝑚,𝑛
𝑀  is Eulerian or not.  

 

Lemma 5.2. Let 𝑛 be odd and 𝑚 = 2 ⋅  𝑗, 𝑗 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛}  ⊆  𝑉, then 𝐺𝑚,𝑛

𝑀  is not 

Eulerian. 

 

Proof. Let 𝑛 be odd and 𝑚 = 2 ⋅  𝑗, where 𝑗 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛}. The multiples of 𝑗 in 

{1, 2, … , 𝑛} is 𝑗 itself. So, the vertex 𝑖 = 2 is not adjacent to the vertex 𝑗 and itself, 

which implies the degree of the vertex 𝑖 = 2 is 𝑛 − 2, which is an odd integer. Thus 

𝐺𝑚,𝑛
𝑀  is not Eulerian.  
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Lemma. 5.3. Let 𝑛 be odd and 𝑚 = 𝑖 ⋅  𝑗,  𝑖, 𝑗 ∈  {⌊𝑛

2
⌋  + 1, ⌊ 𝑛

2
⌋ + 2, … , 𝑛}  ⊆  𝑉, then 

𝐺𝑚,𝑛
𝑀  is not Eulerian. 

 

Proof. Follows from Lemma 5.2, as the degree of the vertex 𝑗 is 𝑛 − 2, which is odd. 

 

Lemma 5.4. Let 𝑛 be odd and 𝑚 = 𝑖 ⋅  𝑗, where 𝑖 ∈  {1, 2, … , ⌊ 𝑛

2
⌋} and 𝑗 ∈  {⌊𝑛

2
⌋ +

1, … , 𝑛}. Then 𝐺𝑚,𝑛
𝑀  is not Eulerian.  

 

Proof. Let 𝑚 = 𝑖 ⋅  𝑗, where 𝑖 ∈  {1, 2, … , ⌊ 𝑛

2
⌋} and  𝑗 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛}. The vertex 𝑖 

is not adjacent to the vertex 𝑗 or any multiples of 𝑗 in {1, 2, … , 𝑛}. Thus, the degree 

of the vertex 𝑖 is 𝑑𝑒𝑔(𝑖) = 𝑛 − ⌊𝑛

𝑗
⌋ − 1 = 𝑛 − 2, as the number of multiples of 𝑗 up 

to 𝑛 is ⌊𝑛

𝑗
⌋ = 1. Since 𝑛 is odd, so 𝑛 − 2 is odd, hence 𝐺𝑚,𝑛

𝑀 is not Eulerian. 

 

Lemma 5.5. Let 𝑛 be odd and 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 ∈  {1, 2, … , ⌊ 𝑛

2
⌋}. Then 𝐺𝑚,𝑛

𝑀  is 

not Eulerian if either ⌊𝑛

𝑖
⌋ or ⌊𝑛

𝑗
⌋ is an odd integer.  

 

 Proof. Let 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 ∈  {1, 2, … , ⌊ 𝑛

2
⌋}. Then in 𝐺𝑚,𝑛

𝑀 , the vertex 𝑖 is not 

adjacent to the multiples of 𝑗 in {1, 2, … , 𝑛} as well as the vertex 𝑗 is not adjacent to 

the multiples of 𝑖 in {1, 2, … , 𝑛}. The number of multiples of 𝑖, 𝑗 up to 𝑛 is ⌊𝑛

𝑖
⌋, ⌊𝑛

𝑗
⌋ 

respectively. Again, the vertex 𝑖 is not adjacent to itself. Thus, the number of vertices 

not adjacent to 𝑖 is ⌊𝑛

𝑗
⌋ + 1 and similarly the number of vertices not adjacent to 𝑗 is 

⌊𝑛

𝑖
⌋ + 1. But 𝑛 is an odd integer. Thus 𝑛 − (⌊𝑛

𝑗
⌋ + 1) is an odd integer if ⌊𝑛

𝑗
⌋ is an odd 

integer. Similarly, 𝑛 − (⌊𝑛

𝑖
⌋ + 1) is an odd integer if ⌊𝑛

𝑖
⌋ is an odd integer. Hence the 

result follows.  

 

Theorem 5.6. Let 𝑛 be an odd integer. Then 𝐺𝑚,𝑛
𝑀  is not Eulerian if 

(1) 𝑚 = 2 ⋅  𝑗, where 𝑗 ∈ {⌊𝑛

2
⌋ + 1, … , 𝑛} 

(2) 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 ∈ {⌊𝑛

2
⌋ + 1, ⌊ 𝑛

2
⌋ + 2, … , 𝑛 }. 

(3) 𝑚 = 𝑖 ⋅  𝑗, where 𝑖 ∈ {1,2, … , ⌊ 𝑛

2
⌋} and 𝑗 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛}. 

(4) 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 ∈  {1,2, … , ⌊ 𝑛

2
⌋} and either ⌊𝑛

𝑖
⌋ or ⌊𝑛

𝑗
⌋ is an odd integer. 

 

Proof. Follows from Lemma 5.2, Lemma 5.3, Lemma 5.4 and Lemma 5.5.  

 

Theorem 5.7.  Let 𝑛 be an odd integer and 𝐺𝑚,𝑛
𝑀  be a complete graph. Then 𝐺𝑚,𝑛

𝑀  is 

Eulerian. 

 

Proof. As the graph 𝐺𝑚,𝑛
𝑀  is complete, so the degrees of the vertices are 𝑛 − 1, which 

is even as 𝑛 is odd. Hence 𝐺𝑚,𝑛
𝑀  is Eulerian.  

 



PROCEEDINGS OF  IAM, V.10, N.1, 2021 

 

56 
 

Theorem 5.8. Let 𝑛 be an odd integer, 𝑚 = 𝑝2 (𝑚 > 𝑛), where 𝑝 < ⌊𝑛

2
⌋ is a prime 

and ⌊𝑛

𝑝
⌋ is an odd integer, then 𝐺𝑚,𝑛

𝑀  is Eulerian. 

  

Proof. The proof follows from Lemma 4.4. 

 

6. Balanced Conditions for 𝐺𝑚,𝑛
𝑀    

 

The average degree 𝑑(𝛤) of a graph Γ = (𝑉Γ, 𝐸Γ) is defined as 𝑑(𝛤) =
∑ deg(𝑣𝑖)𝑙

𝑖=1

𝑙
 , where 𝑣𝑖∈ 𝑉Γ for 𝑖 = 1, 2, … , 𝑙 and 𝑙 = |𝑉𝛤| is the order of the graph 𝛤. 

In general, 𝑑(𝛤) is not necessarily an integer. The authors in [2] defined the top of a 

graph 𝛤 as  𝜇 (𝛤) = ⌈𝑑(𝛤)⌉, the balanced vertex set 𝐵𝛤 = {𝑣 ∈  𝑉𝛤: 𝑑𝑒𝑔(𝑣) =
 𝜇 (𝛤)},  the upper vertex set 𝑈𝛤 = {𝑣 ∈  𝑉𝛤: 𝑑𝑒𝑔(𝑣) >  𝜇 (𝛤)} and the lower vertex 

set as  𝐿𝛤 = {𝑣 ∈  𝑉𝛤: 𝑑𝑒𝑔(𝑣) <  𝜇 (𝛤)}.  𝛤 is said to be balanced graph if  𝑈𝛤 =  𝜙 

If not, 𝛤 is a non-balanced graph. The gap of 𝛤 is ℎ(𝛤) = 𝑙(𝜇 (𝛤) − 𝑑(𝛤)).  

 

Theorem. 6.1.  For 𝑡(∈  ℕ) distinct pair of vertices 𝑖, 𝑗 ∈  𝑉 such that 𝑚 = 𝑖 ⋅
 𝑗, (𝑚 > 𝑛), where 𝑖, 𝑗 ∈ {⌊𝑛

2
+ 1⌋, … , 𝑛}, the top of the graph 𝐺𝑚,𝑛

𝑀  is 𝑛 − 1. 

Moreover 𝐺𝑚,𝑛
𝑀  is balanced. 

 

Proof. Let m= 𝑖1 ⋅ 𝑗1=𝑖2 ⋅ 𝑗2 =… =𝑖𝑡  ⋅ 𝑗𝑡  , where  𝑖1, 𝑗1, 𝑖2, 𝑗2,…, 𝑖𝑡, 𝑗𝑡  ∈ {⌊𝑛

2
+1⌋, …, 

n}. Then  

using Lemma 4.6, we find, 𝐺𝑚,𝑛
𝑀  contain 𝑛 − 𝑡 vertices of degree 𝑛 − 1 and 𝑡 vertices 

of degree 𝑛 − 2. So, the average degree of the graph 𝐺𝑚,𝑛
𝑀  is 𝑑 (𝐺𝑚,𝑛

𝑀 ) =

 
{(𝑛−𝑡)⋅ (𝑛−1)+𝑡⋅ (𝑛−2)}

𝑛
 =  

𝑛2−𝑛−𝑡

𝑛
 =  𝑛 − 1 −

𝑡

𝑛
. Hence the top of 𝐺𝑚,𝑛

𝑀  is  

𝜇 ( 𝐺𝑚,𝑛
𝑀 ) = ⌈𝑑 (𝐺𝑚,𝑛

𝑀 )⌉ = 𝑛 − 1, as ⌈𝑡

𝑛
⌉ = 0. Thus, the top of 𝐺𝑚,𝑛

𝑀  is  𝜇(𝐺𝑚,𝑛
𝑀 ) =

 𝑛 − 1, implies that 𝐺𝑚,𝑛
𝑀  is balanced [2].  

 

Theorem 6.2. Let 𝑚 > 𝑛. The graph 𝐺{𝑚,𝑛}
𝑀 is balanced if   

 (i) 𝑚 is an odd prime; 

 (ii) 𝑚 is a multiple of an odd prime 𝑝 > 𝑛; 

 (iii) 
𝑚

𝑖
> 𝑛, where 𝑖 ≤  𝑛 is a factor of 𝑚 and 𝑖 ∈  𝑉; 

 (iv) 𝑚 = 𝑝2, where 𝑝 is an odd prime and ⌊𝑛
2⁄ ⌋< 𝑝 ≤  𝑛. 

 

Proof. Easily the proof follows, as 𝐺𝑚,𝑛
𝑀  is complete for all the cases by Theorem 

4.1, implying 𝑑(𝐺𝑚,𝑛
𝑀 )= 𝜇 (𝐺𝑚,𝑛

𝑀 )= 𝑛 − 1. 

 

M. P. Damas et al. [2] mentioned that there are balanced and non-regular 

graphs for which lower vertex set 𝐿 ≠  𝜙. We observe that there are class of 
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𝐺𝑚,𝑛
𝑀  graphs which are non-regular                   but balanced and the lower vertex set 

𝐿 ≠  𝜙.  

 

Theorem. 6.3.  For 𝑚 > 𝑛 and 𝑚 = 𝑝2, where 𝑝 is an odd prime and 𝑝 <  ⌊𝑛

2
⌋, the 

graph 𝐺𝑚,𝑛 
𝑀  is balanced. Moreover, the independent vertex set of 𝐺𝑚,𝑛

𝑀  form the lower 

vertex set of the given graph.  

 

Proof. Let 𝑚 = 𝑝2, where 𝑝 is an odd prime and 𝑝 <  ⌊𝑛

2
⌋. Then 𝐺𝑚,𝑛

𝑀  contains 𝑛 −

⌊𝑛

𝑝
⌋ vertices of degree 𝑛 − 1 and ⌊𝑛

𝑝
⌋ vertices of degree 𝑛 − ⌊𝑛

𝑝
⌋. Thus, the average 

degree 𝑑(𝐺𝑚,𝑛
𝑀 )=

(𝑛−1)(𝑛−⌊𝑛
𝑝

⌋)+⌊ 𝑛
𝑝

⌋(𝑛−⌊𝑛
𝑝

⌋)

𝑛
= 𝑛 − 1 −

⌊𝑛
𝑝

⌋

𝑛
−

⌊𝑛
𝑝

⌋⌊𝑛
𝑝

⌋

𝑛
. Hence the top of the 

graph 𝐺𝑚,𝑛
𝑀  is  𝜇 (𝐺𝑚,𝑛

𝑀 ) = ⌈𝑑(𝐺𝑚,𝑛
𝑀 )⌉ = 𝑛 − 1, which implies 𝐺𝑚,𝑛

𝑀  is balanced [2]. 

Assume 𝐼 =  {𝑥 ∈  𝑉| 𝑥 is a multiple of 𝑝}  ⊆  𝑉. Then the set 𝐼 forms an 

independent set as for any 𝑠1, 𝑠2 ∈  𝐼, 𝑚| 𝑠1 ⋅  𝑠2. The cardinality of the set 𝐼 is ⌊𝑛

𝑝
⌋ 

and the degree of any vertex 𝑠 ∈  𝐼 is 𝑛 − ⌊𝑛/𝑝⌋ < 𝑛 − 1. Thus, the lower vertex set 

of 𝐺𝑚,𝑛
𝑀  is 𝐼.  

 

Theorem. 6.4. For 𝑚 > 𝑛, 𝑚 = 𝑝𝑞, where 𝑝 ∈  {1, 2, … , ⌊ 𝑛

2
⌋}, 𝑞 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛} 

are odd primes, the graph 𝐺𝑚,𝑛
𝑀  is balanced.  

 

Proof. Let 𝑚 = 𝑝𝑞, where 𝑝 ∈  {1,2, … , ⌊ 𝑛

2
⌋}, 𝑞 ∈  {⌊𝑛

2
⌋ + 1, … , 𝑛} are odd primes, 

then the possible degrees are {𝑛 − 1, 𝑛 − ⌊𝑛

𝑞
⌋ − 1, 𝑛 − ⌊𝑛

𝑝
⌋ − 1}. Thus the average 

degree 𝑑(𝐺𝑚,𝑛
𝑀 )=

1

𝑛
[(𝑛 − 1)(𝑛 − ⌊𝑛

𝑝
⌋ − ⌊𝑛

𝑞
⌋ + ⌊ 𝑛

𝑝𝑞
⌋) + (𝑛 − ⌊𝑛

𝑞
⌋ − 1)⌊ 𝑛

𝑝
⌋ +  (𝑛 −

⌊𝑛

𝑝
⌋ − 1)⌊ 𝑛

𝑞
⌋]  = 𝑛 − 1 −

2

𝑛
⌊𝑛

𝑝
⌋⌊𝑛

𝑞
⌋. But 

2

𝑛
⌊𝑛

𝑝
⌋⌊𝑛

𝑞
⌋ = 0, as ⌊𝑛

𝑞
⌋ = 1 and ⌊𝑛

𝑝
⌋ < ⌊𝑛

2
⌋. Hence 

the Top of 𝐺𝑚,𝑛
𝑀  is  𝜇 (𝐺𝑚,𝑛

𝑀 ) = ⌈𝑑(𝐺𝑚,𝑛
𝑀 )⌉ = 𝑛 − 1, which follows 𝐺𝑚,𝑛

𝑀  is balanced. 

 

Theorem 6.5. Let 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1) and 𝑚 = 2⸳ 𝑝, where 𝑝 ∈  {⌊𝑛

2
+ 1⌋, … , 𝑛}  ⊆

 𝑉 is a prime. Then 𝐺𝑚,𝑛
𝑀  is non-balanced, if 𝑛 is even and 𝐺𝑚,𝑛

𝑀  is balanced, if 𝑛 is 

odd. 

 

Proof. Let 𝑚 = 2 ⋅  𝑝, where 𝑝 is a prime and 𝑝 ∈  {⌊𝑛

2
+ 1⌋, … , 𝑛}  ⊆  𝑉. Using 

Lemma 4.3, we find the average degree 𝑑(𝐺𝑚,𝑛
𝑀 ) and the top 𝜇(𝐺𝑚,𝑛

𝑀 ) of 𝐺𝑚,𝑛
𝑀 . 

Let 𝑛 be even. Then the average degree 𝑑(𝐺𝑚,𝑛
𝑀 ) =

1

𝑛
{

𝑛−2

2
(𝑛 − 1) +

𝑛

2
(𝑛 − 2) +

𝑛−2

2
} = 𝑛 − 2. The top of 𝐺𝑚,𝑛

𝑀  is 𝜇 (𝐺𝑚,𝑛
𝑀 ) = ⌈𝑑(𝐺)⌉ = ⌈𝑛 − 2⌉ = 𝑛 − 2. But the 

vertex 𝑤 = 1 ∈  𝑉 is of degree 𝑛 − 1, which implies 𝐺𝑚,𝑛
𝑀  is a non-balanced graph 

[2].  
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Let 𝑛 be odd. Then the average degree 𝑑(𝐺𝑚,𝑛
𝑀  ) = 1/𝑛{

𝑛−1

2
(𝑛 − 1) +

𝑛−1

2
(𝑛 −

2) +
𝑛−1

2
} = 𝑛 − 2 +

1

𝑛
. Thus, the top of 𝐺𝑚,𝑛

𝑀  is 𝜇 (𝐺𝑚,𝑛
𝑀  ) = ⌈𝑑(𝐺)⌉ = ⌈𝑛 − 2 +

1

𝑛
⌉ = 𝑛 − 2 + ⌈

1

𝑛
⌉ = 𝑛 − 1. Hence the result follows. 

 

As a consequence of Theorem 6.5, we find that the gap of the non-regular graph 𝐺𝑚,𝑛
𝑀  

is zero.  

 

Corollary 6.6. Let 𝑛 < 𝑚 ≤  𝑛(𝑛 − 1) and 𝑚 = 2 ⋅  𝑝, where 𝑝 ∈ {⌊𝑛

2
+1⌋, … , 𝑛 } ⊆

 𝑉 is a prime. Then the gap of 𝐺𝑚,𝑛
𝑀  is zero if 𝑛 is even.  

 

Proof. Let 𝑛 be even and and 𝑚 = 2 ⋅  𝑝, where 𝑝 ∈  {⌊𝑛

2
+ 1⌋, … , 𝑛}  ⊆  𝑉 is a prime. 

Then from Theorem 6.5, for the graph 𝐺𝑚,𝑛
𝑀 ,  𝜇(𝐺𝑚,𝑛

𝑀 ) =  ⌈𝑑(𝐺)⌉ = ⌈𝑛 − 2⌉ = 𝑛 −

2. Thus, the gap   ℎ(𝐺𝑚,𝑛
𝑀 ) = 𝑛(𝜇 (𝐺𝑚,𝑛

𝑀 ) − 𝑑(𝐺𝑚,𝑛
𝑀 )) = 0. 

                                                    

7. Conclusion 

 

In this paper, we have defined and studied an undirected graph 𝐺𝑚,𝑛
𝑀 =  (𝑉, 𝐸), 

where the vertex set 𝑉 =  {1, 2, … , 𝑛} for 𝑛, 𝑚 ∈  ℕ and two distinct vertices 𝑖, 𝑗 ∈
 𝑉 are adjacent if and only if 𝑚 ∤ 𝑖 ⋅  𝑗. We observed that 𝐺𝑚,𝑛

𝑀 is disconnected if 𝑚 ≤

 𝑛 and 𝐺𝑚,𝑛
𝑀  is complete for  𝑚 > 𝑛(𝑛 − 1). We studied vertex degree, edge degree, 

diameter, Eulerian property of 𝐺𝑚,𝑛
𝑀  for various values of 𝑚. We found that 𝐺𝑚,𝑛

𝑀  is 

a class of split graph for 𝑚 = 𝑝2 > 𝑛, where 𝑝 ≤ ⌊𝑛

2
⌋ and for 𝑚 = 𝑖 ⋅  𝑗, where 𝑖, 𝑗 

are the unique factors of 𝑚 such that 𝑖, 𝑗 ∈  {⌊𝑛

2
⌋ + 1, ⌊ 𝑛

2
⌋ + 2, … , 𝑛 } ⊆ 𝑉. We also 

observed that there are non-regular 𝐺𝑚,𝑛
𝑀  graphs which are balanced. 

 

 

 

 

References 

 

1.  Chakrabarty, I. An undirected graph on finite subset of natural numbers, 

Indian Journal of Discrete Mathematics 2(1), 2015, pp. 128-138. 

2.  Damas, M. P., Arkenzon, L. M., de Abreu, N. M. M. New concepts and 

results on the average degree of a graph, Applicable Analysis and Discrete 

Mathematics, 1, 2007, pp. 284-292. 

3.  Fander, M. R. Chromatic and clique numbers of a class of perfect graphs, 

Transactions on Combinatorics, 4(4), 2015,pp. 1-4. 

4.  Foldes, S., Hammer, P. L. Split graphs having Dilworth number two, 

Canadian Journal of Mathematics 29(3), 1977, pp. 666-672. 



I. CHAKRABARTY, J. V. KUREETHARA, M. ACHARYA: 𝐺𝑚,𝑛
𝑀 GRAPH… 

 

59 
 

5.  Foldes, S., Hammer, P. L. Split graphs, Proceedings of the 8th South-

Eastern Conference on Combinatorics: Graph Theory and Computing, 1977, 

pp. 311-315. 

6.  Gera, R., Haynes, T. W., Hedetniemi, S. T., Henning, M. A. An Annotated 

Glossary of Graph Theory Parameters, with Conjectures in: Gera, R., 

Haynes, T., Hedetniemi, S. (eds) Graph Theory. Problem Books in 

Mathematics. Springer. 2018 

7. West, D. B. Introduction to Graph Theory, Prentice Hall, NJ,2001. 

 

 

 

 


